3.955 \(\int \frac{1}{x^2 \left (1+x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=140 \[ -\frac{3 \sqrt{x^4+1}}{2 x}+\frac{1}{2 \sqrt{x^4+1} x}+\frac{3 \sqrt{x^4+1} x}{2 \left (x^2+1\right )}+\frac{3 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{4 \sqrt{x^4+1}}-\frac{3 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{2 \sqrt{x^4+1}} \]

[Out]

1/(2*x*Sqrt[1 + x^4]) - (3*Sqrt[1 + x^4])/(2*x) + (3*x*Sqrt[1 + x^4])/(2*(1 + x^
2)) - (3*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/2])/(2*S
qrt[1 + x^4]) + (3*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x],
1/2])/(4*Sqrt[1 + x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.0810831, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385 \[ -\frac{3 \sqrt{x^4+1}}{2 x}+\frac{1}{2 \sqrt{x^4+1} x}+\frac{3 \sqrt{x^4+1} x}{2 \left (x^2+1\right )}+\frac{3 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{4 \sqrt{x^4+1}}-\frac{3 \left (x^2+1\right ) \sqrt{\frac{x^4+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{2}\right )}{2 \sqrt{x^4+1}} \]

Antiderivative was successfully verified.

[In]  Int[1/(x^2*(1 + x^4)^(3/2)),x]

[Out]

1/(2*x*Sqrt[1 + x^4]) - (3*Sqrt[1 + x^4])/(2*x) + (3*x*Sqrt[1 + x^4])/(2*(1 + x^
2)) - (3*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/2])/(2*S
qrt[1 + x^4]) + (3*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x],
1/2])/(4*Sqrt[1 + x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 8.41106, size = 126, normalized size = 0.9 \[ \frac{3 x \sqrt{x^{4} + 1}}{2 \left (x^{2} + 1\right )} - \frac{3 \sqrt{\frac{x^{4} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{2}\right )}{2 \sqrt{x^{4} + 1}} + \frac{3 \sqrt{\frac{x^{4} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{2}\right )}{4 \sqrt{x^{4} + 1}} - \frac{3 \sqrt{x^{4} + 1}}{2 x} + \frac{1}{2 x \sqrt{x^{4} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**2/(x**4+1)**(3/2),x)

[Out]

3*x*sqrt(x**4 + 1)/(2*(x**2 + 1)) - 3*sqrt((x**4 + 1)/(x**2 + 1)**2)*(x**2 + 1)*
elliptic_e(2*atan(x), 1/2)/(2*sqrt(x**4 + 1)) + 3*sqrt((x**4 + 1)/(x**2 + 1)**2)
*(x**2 + 1)*elliptic_f(2*atan(x), 1/2)/(4*sqrt(x**4 + 1)) - 3*sqrt(x**4 + 1)/(2*
x) + 1/(2*x*sqrt(x**4 + 1))

_______________________________________________________________________________________

Mathematica [C]  time = 0.0742425, size = 75, normalized size = 0.54 \[ \frac{1}{2} \left (-\frac{2}{\sqrt{x^4+1} x}-\frac{3 x^3}{\sqrt{x^4+1}}+3 (-1)^{3/4} F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )-3 (-1)^{3/4} E\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-1} x\right )\right |-1\right )\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^2*(1 + x^4)^(3/2)),x]

[Out]

(-2/(x*Sqrt[1 + x^4]) - (3*x^3)/Sqrt[1 + x^4] - 3*(-1)^(3/4)*EllipticE[I*ArcSinh
[(-1)^(1/4)*x], -1] + 3*(-1)^(3/4)*EllipticF[I*ArcSinh[(-1)^(1/4)*x], -1])/2

_______________________________________________________________________________________

Maple [C]  time = 0.016, size = 107, normalized size = 0.8 \[ -{\frac{{x}^{3}}{2}{\frac{1}{\sqrt{{x}^{4}+1}}}}-{\frac{1}{x}\sqrt{{x}^{4}+1}}+{\frac{{\frac{3\,i}{2}} \left ({\it EllipticF} \left ( x \left ({\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) ,i \right ) -{\it EllipticE} \left ( x \left ({\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2} \right ) ,i \right ) \right ) }{{\frac{\sqrt{2}}{2}}+{\frac{i}{2}}\sqrt{2}}\sqrt{1-i{x}^{2}}\sqrt{1+i{x}^{2}}{\frac{1}{\sqrt{{x}^{4}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^2/(x^4+1)^(3/2),x)

[Out]

-1/2*x^3/(x^4+1)^(1/2)-(x^4+1)^(1/2)/x+3/2*I/(1/2*2^(1/2)+1/2*I*2^(1/2))*(1-I*x^
2)^(1/2)*(1+I*x^2)^(1/2)/(x^4+1)^(1/2)*(EllipticF(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),
I)-EllipticE(x*(1/2*2^(1/2)+1/2*I*2^(1/2)),I))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left (x^{4} + 1\right )}^{\frac{3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((x^4 + 1)^(3/2)*x^2),x, algorithm="maxima")

[Out]

integrate(1/((x^4 + 1)^(3/2)*x^2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{{\left (x^{6} + x^{2}\right )} \sqrt{x^{4} + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((x^4 + 1)^(3/2)*x^2),x, algorithm="fricas")

[Out]

integral(1/((x^6 + x^2)*sqrt(x^4 + 1)), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.38554, size = 31, normalized size = 0.22 \[ \frac{\Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{4}, \frac{3}{2} \\ \frac{3}{4} \end{matrix}\middle |{x^{4} e^{i \pi }} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**2/(x**4+1)**(3/2),x)

[Out]

gamma(-1/4)*hyper((-1/4, 3/2), (3/4,), x**4*exp_polar(I*pi))/(4*x*gamma(3/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left (x^{4} + 1\right )}^{\frac{3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((x^4 + 1)^(3/2)*x^2),x, algorithm="giac")

[Out]

integrate(1/((x^4 + 1)^(3/2)*x^2), x)